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Preface

The Workshop on Component-Oriented Programming (WCOP) was one of the driving forces in the
nineties that brought component orientation into broader consciousness of the software development
community. Definitions of basic terminology were discussed and concepts were clarified. In the 2000
decade, the component idea got established in dedicated conferences (foremost CBSE, itself a former
ICSE workshop) and also influenced the software architecture community strongly. During these times,
WCOQOP evolved to a workshop for young researchers to present new ideas and to collect feedback from
established members of the community. Right from the beginning, WCOP papers received high attention
and often formed the premier way for researchers informing themselves about new developments in our
community. This is, for example, well demonstrated by the high citation rate of WCOP papers.

Now, in 2010, at the beginning of a new decade, WCOP institutionalized its role as a forum for young
researchers in our community. The success of WCOP as the doctoral symposium of the CompArch fed-
erated conference shows not only that this role of WCOP is appropriate, but much more it also shows that
the component idea is still vibrant and attracts young researchers internationally. We welcome Assist.-
Prof. Dr. Barbora Biihnova from Masaryk University in Brno as an additional organizer, next to Clemens
Szyperski, Wolfgang Weck, and Ralf Reussner. As a new incentive, WCOP 2010 awards the CompArch
Young Investigator Award, which is given to the work of a young researcher in our community to award
specifically promising work of expected high importance. The award is sponsored by the steering com-
mitee of CompArch which also forms the programme commitee of WCOP. This year, the first CompArch
young investigator award was given to Zoya Durdik from FZI, Germany, for her paper on the integration
of architectural modeling into agile development methods. This year, after a rigorous review process,
we accepted ten papers. The reader will notice, that all of these papers show original ideas with well-
started research, highlighting topics showing the role that components can play for the future of software
development.

We thank the programme committee for their valuable help in the paper selection and Erik Burger for
preparing the proceedings of this year’s WCOP. We are grateful to the CompArch organizers, especially
to FrantiSek P14Sil and Petr Hnétynka, for taking care of all the local organization and for accommodating
our special requests.

We wish the participants and presenters of WCOP 2010 many insights, useful connections, and further
successes in our community.

Brno, Karlsruhe, Redmond and Zurich

Barbora Biithnova, Ralf Reussner, Clemens Szyperski, Wolfgang Weck
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Formal Model Assisted Code Generation
for Critical Embedded Systems

Etienne Borde
Milardalen Real-Time and Research Center
Milardalen University
P.O. Box 883, SE-72 123 Visteras, Sweden
Email: etienne.borde @mdh.se

Abstract—In order to cope with the growing complexity of
embedded software while shortening time-to-market, component-
based software engineering offers the possibility to reuse existing
functionalities while automating (i) the analysis of the system
under design and (ii) the production of the final software.
However, it is difficult to ensure that the produced software
actually conforms to the hypothesis used for analysis purpose.
Indeed, model based verification relies on a very different
semantics from the one used in the software implementation.

In this paper, we propose a design approach that consists
of automating the production of a detailed description of the
software application, as an intermediate step towards its concrete
production. As a result, the analysis of the system can be made at
both levels, considering its abstract modelling and the description
of its concrete realisation.

I. INTRODUCTION

More and more products in our everyday life take advantage
of the miniaturization of electronics to provide functionalities
that are controlled by a software embedded system. In order to
cope with an increasingly competitive market, these function-
alities are more and more sophisticated, and thus increasingly
complex. For the same reason, the design of such embedded
systems must cope with even shorter time-to-market. Com-
puter systems that are embedded in cars, air planes, military
systems etc., are called critical embedded systems because a
failure of such a system may have catastrophic consequences.
In this paper, we propose a new design approach that we
intend to implement in order to cope with the complexity
of developing critical embedded systems while increasing the
confidence one can have in the final result. To achieve these
goals, we propose a solution that:

1) eases the analysis of a software system at different stages
of its design process;

2) enables reusability of already existing design artefacts;

3) automates the different steps of the design process, until
completion.

Analysis of a system under design increases confidence
one can have in the final product. The reusability of existing
design artefacts accelerates the time-to-market of a product,
even more in product-lines as it is often the case in industry.
Finally, automation of the design process is very important
since the increasing complexity of embedded software induces
integration of a huge set of information that cannot be handled
manually.

If each of these points provides solutions to design phases
of embedded systems, their integration in a consistent design
process still raises an important problem: when it comes to
analysis of critical embedded systems, formal methods enable
insurance that an abstract model of the system under design
respects some safety properties. These formal techniques rely
on mathematical constructions that are used to abstract the
behaviour of a system. On the other hand, the final system is
implemented with a programming language whose semantic
(i.e. meaning when interpreted by a machine or a software
tool) is very different from the one used for analysis purpose.
This poses the following problem: how to ensure that the
implementation of the system actually respects the hypotheses
that were used for verification purposes?

In this paper, we tackle this problem by proposing a new ap-
proach to automate the implementation of the formal semantic:
instead of directly producing this implementation, we propose
to use an intermediate level of representation of the software
(i.e. between the formal level and the implementation level),
whose semantic is close to the implementation semantics but
enables to automate its analysis.

The remainder of this paper is organised as follows: sec-
tion II presents the motivations of this work describing the
two main challenges it aims at tackling. Section III consti-
tutes a brief state of the art of research works that tackled
those challenges. In section IV, we describe in details the
approach for which we intend to implement a dedicated
component framework. Finally, section V concludes this paper
and presents the perspectives of this work.

II. MOTIVATIONS

The main goal of the approach presented in this paper
is to bridge the gap between the formal semantics required
by the analysis techniques of embedded systems and the
implementation of this type of systems. Bridging this gap
enables insurance that the verified model correctly represents
the implemented system, and vice versa. Let us try to present
hereafter the different challenges raised by this objective.

A. Formal semantics versus implementation

Different techniques exist to ensure that a model meets a
given set of safety properties (properties ensuring that the
system always provides the functionalities it was designed for).

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010



8 Etienne Borde

Among those techniques, model-checking is the easiest to use
in an automated design process. There exists two different
approaches in order to perform model-checking.

One consists of modelling a system that has been imple-
mented without any simplifying hypothesis on its execution
semantics. In this case, the formal model must represent the
implemented system as closely as possible. The implementa-
tion actually leads the design process.

The other approach consists of restricting the execution
semantics of the software that constitutes the system thanks
to hypothesis that will simplify the verification process. One
can for instance suppose that all the actions of a system are
atomic so that timing properties is no longer an issue in the
verification process. In this case, verification leads the design
process. If using the former technique, the system is much
simpler to implement (the implementation does not have to
ensure a formal semantic) but more difficult to verify: model
checking techniques suffer from the well known scalability
problem, where this problem increases correspondingly to the
complexity of the model. On the other hand, the simplifying
hypotheses of the later approach are more difficult to imple-
ment, but ease the analysis [1].

In this paper, we choose the later approach, since it is more
suitable for safety-critical systems.

Challenge 1. Automate the implementation of a formally
defined execution semantic.

B. Reusability versus automatic production

Reusability of design artefacts is an important industrial
requirement when it comes to manage the evolution of an
existing product. On the other hand, embedded systems also
have to cope with very heterogeneous requirements, like for
instance: memory limitations, temporal determinism, power
consumption and properties specific to a given system. These
requirements may also lead to the selection of a particular
execution platform (hardware, operating system and communi-
cation media), which can decrease the reusability of a piece of
software. Indeed, embedded software most of the time include
some platform dependent code: when changing the platform,
it is often necessary to use a different compiler. To deal with
this heterogeneity of requirements and execution platforms, it
is possible to generate the software application, but reducing
the reusability of the corresponding code.

Concluding the above, heterogeneity of embedded systems’
requirements makes the reusability of existing software diffi-
cult [2].

Challenge 2. Enable reusability of design artefacts while
answering to the heterogeneity of requirements of embedded
systems.

III. SURVEY OF THE FIELD

a) Existing solutions to challenge 1: The problem of
implementing formally defined semantics has been intensively
studied over the last 20 years, and has been marked by a series
of success stories (e.g. ESTEREL [3], LUSTRE [4], BIP [5],

CSP [6]). These languages rely on simplifying hypothesis that
ease their mathematical analysis: for instance, synchronous
languages (ESTEREL and LUSTRE) assume that every action
of the software application is made instantaneously when
receiving a triggering event. Of course, the implementation
cannot strictly respect this hypothesis. Still, the compilers of
these languages ensure that for any input pattern given to the
system, its outputs will be the same as the one that would have
been produced according to the formal semantics [7]. In the
scope of our proposal, the main limitation of those solutions is
that they do not address the issue of the reusability of existing
design artefacts (see challenge 2).

b) Existing solutions to challenge 2: When it comes
to reusability of design artefacts, component based software
engineering is a well established solution [8], which is already
used in the design of industrial non-critical software products
(Koala [9], THINK [10], MyCCM [11]). As far as we know,
only a few projects have investigated the usage of component-
based software engineering in the domain of critical embedded
systems (MyCCM-HI [12], ProCom [13]). ProCom defines a
formal semantic that eases the formal analysis of a system’s
behaviour. The definition of this semantic consists of assuming
that the communications (control and data transfer) between
collocated software components are atomic. This actually
relaxes the synchronous semantics: the execution time of the
components is not null. On the other hand, MyCCM-HI does
not define any formal semantics, but provides transformation
rules to formal methods in order to ease the analysis. Pro-
Com is a component based model lead by verification, while
MyCCM-HI is lead by implementation. This is the reason why
we propose, in the approach presented here, to use the ProCom
component model.

Among the research works that aim at coping with the
heterogeneity of requirements existing in the domain of em-
bedded systems, architecture description languages and mod-
elling languages constitute a promising solution. In the domain
of real-time and embedded systems, UML and its profile
MARTE [14], as well as AADL [15] offer (among others)
the possibility to model precisely the software architecture of
an embedded system. The architecture description language
AADL has particularly retained our attention. The reasons of
this interest are multiple:

1) AADL is a standard dedicated to the design and anal-

ysis of real-time and embedded systems;

2) several research programs lead to the creation of anal-
ysis and code generation tools using this language
(Cheddar [16], Ocarina [17], ADAPT [18]);

3) its usage is complementary with the usage of ProCom:
they both address different type of design and analysis
requirements of a development process: ProCom targets
the encapsulation of software functionalities in order
to ease their reuse while AADL enables to describe
the allocation of those functionalities over the execution
resources.

As to summarize, AADL meets most of the qualities of an

ideal ADL [19].
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In next section, we present in more details the new approach
we propose to answer both challenges 1 and 2.

IV. TECHNICAL APPROACH

The approach we propose in this paper consists of automat-
ing the production of platform dependent code while reusing
the basic functionalities of a system. Platform dependent code
is thus generated while the functional code is reused (regard-
less it has been handily written or generated by another tool).
These basic functionalities will be encapsulated as software
components in order to ease their reuse in different contexts.
The corresponding component model will provide a formal
semantics in order to ease system level verifications (i.e. the
respect of the system level requirements). As a first step
towards ensuring this formal semantic is actually respected in
the implementation, we propose to model this implementation
in an intermediate representation that must be close to the
implementation semantics, but must also be analysable. The
corresponding level of abstraction consists of representing
the execution and communication semantics of the software:
we describe how functionalities are triggered and how they
communicate in the final implementation. Shared variables,
periodic and sporadic tasks, as well as communication buffers
have to be precisely represented in this model.

To begin with the presentation of this approach, we first
describe ProCom, the component model we have selected for
this approach. We then illustrate the gap existing between the
semantic used for the analysis and for the implementation. To
illustrate this difference, we rely on the example of ProCom
components interaction. This will finally lead us to the pre-
sentation of our integrated approach.

A. ProCom, the component model

1) General presentation: The ProCom component model
has been specifically developed to address the specificities
of designing distributed real-time and embedded systems. To
address the different concerns that exist on different levels of
the design of such systems, ProCom consists of two distinct,
but related, layers. At the upper layer, called ProSys, the
system is modelled as a number of active and concurrent
subsystems, communicating by message passing. The lower
layer, ProSave, addresses the internal design of a subsystem
down to primitive functional components implemented by
code.

In ProSys, a system is modelled as a collection of concur-
rent subsystems that communicate by asynchronous message
passing.

Contrasting this, the lower lever, ProSave, consists of pas-
sive units, and is based on a pipes-and-filters architectural style
with an explicit separation between data and control flow. The
former is captured by data ports where data of a given type can
be written or read, and the latter by trigger ports that control
the activation of components. Data ports always appear in a
group together with a single trigger port, and the data ports in
the same group are read or written together in a single atomic

action. This is the main hypothesis of the ProCom component
model in order to ease the formal analysis of the system under
design.

Both layers are hierarchical, meaning that subsystems as
well as components can be nested. The way in which the
two layers are linked together is that a primitive ProSys
subsystem (i.e., one that is not composed of other subsystems)
can be further decomposed into ProSave components. At the
bottom of the hierarchy, the behavior of a primitive ProSave
component is implemented as a C function.

2) Specificities of ProCom: The main characteristic of the
ProCom component model is that it exhibits, through the
structure of the components, the execution model of the
software architecture. To achieve this objective, the ProCom
component model imposes restrictions on the behavior of its
constructs that we explain hereafter:

The functionality of a ProSave component is captured by
a set of services. The services of a component are triggered
individually and can execute concurrently, while sharing only
data. A service consists of one input port group and zero or
more output port groups, and each port group consists of one
trigger port and a number of data ports. An input port group
may only be accessed at the very start of each invocation, and
the service may produce parts of the output at different points
in time. The input ports are read in one atomic step, and then
the service performs internal computations and writes at its
output port groups. The data and triggering of an output group
of a service are always produced at the same time. Before
the service returns to idle, each of the associated output port
groups must have been activated exactly once. This restriction
serves for tight read-execute-write behavior of a service.

In order to implement complex functionalities, ProCom
components must be connected. This can be done by simple
connections that transfer data or control, and connectors
providing more elaborate manipulation of the data and control
flow.

Finally, ProCom gives the possibility to model the internal
structure of ProSys components thanks to connected ProSave
components, connectors, and clocks. Ports primitive ProSys
subsystems, dedicated to message passing, are then connected
to data and trigger ports of ProSave components. Besides,
clocks serve for generating periodic trigger and activate com-
ponent assemblies periodically.

Figure 1 shows the model of a primitive ProSys subsystem
composed of ProSave components, connectors and clocks. As
one can see on the top right part of the figure, message ports of
ProSys components can be connected to trigger and data ports
of ProSave components. This actually means that data con-
tained in messages received on the system ports are transmitted
to the connected subcomponents. Connectors are represented
in this figure as n-to-m connections. For instance, a control
fork connector is positioned between the clock activated at 50
Hertz and the components triggered by this clock (components
computing the actual direction and the desired direction). This
connector states that both computations have to be executed
in parallel.
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Fig. 1. Stability Control System

B. Deployment of ProCom components

Modelling the deployment of ProCom components just
consists of representing the allocation of ProSys components
onto virtual nodes that are latter on mapped onto the concrete
hardware platform. This information is then used to realize
the deployment of components. Since ProCom is dedicated
to the design of critical distributed real-time and embedded
systems, components are deployed statically: the definition and
initialization of data structures corresponding to components,
tasks and interactions, is made at compile time (or during
the very beginning of the system initialization if necessary).
As a consequence of this choice, the definition of these data
structures, as well as their initialization, is synthesised into the
code of the system implementation.

This synthesis process mainly consists of the components-
to-resource allocation. In the scope of distributed and real-time
embedded systems, this allocation consists of mapping:

« interactions of ProSave components to shared variables
and call sequences;

« ProSave components activation (clocks and communica-
tion channels) to real-time tasks;

« interactions of ProSys components to the physical com-
munication media.

As presented in the introduction of this paper, synthesising
the system code while ensuring its conformance with the
model used for its analysis is a difficult problem. In the re-
minder of this section, we present our current works that aims
at answering this issue in the scope of ProSave components.

The main hypothesis of data transfer between ProSave
components is atomicity. Of course, this hypothesis cannot be
ensured in a multi-threaded implementation since it requires
data copying and locking. However, the implementation must
ensure that the data transfer pattern (emission and reception)
is the same as the one that have been considered for analysis
(i.e. with the atomicity hypothesis). To ensure this, we propose
to rely on a three steps data transfer with a double buffer
implementation: the output port of a component is deployed
as a set of two buffers, one that can be updated during the
execution of the component, and one that contains the last
up-to-date value.

1) The first step of a data transfer involves the writer

component: during its execution, it can write on the
accessible buffer.

2) The second step begins when the output port group
(containing the considered data port) is triggered. At
this moment, the buffer roles are switched: the accessible
buffer becomes the last up-to-date buffer and vice versa.

3) The last step is executed when the port group containing
the reader data port is triggered. Then, the last up-to-date
value is copied in the internal structure of the reader
service.

In order to ensure atomicity and data consistency, the second
and third steps must never be concurrently and simultaneously
accessed. This double buffer solution has been preferred to
a single buffer implementation since it reduces time spent
in the critical section, thus getting closer to the atomic
hypothesis. Besides, it is similar to the solution used in the
scope of synchronous programming, for which a conformance
proof has been provided [1]. However, we did not yet prove
that this implementation conforms to the hypothesis of the
ProCom model analysis [13]. As one can easily understand,
the conformance between this implementation and the analysis
semantic is very difficult to ensure.

In the remainder of this paper, we propose a solution to
improve the confidence one can have in the conformance
between the analysed model and its implementation.

C. Describing the execution model with AADL

In order to bridge the gap between the analysis and the
implementation semantics, we propose to produce an AADL
description representing the allocation of ProCom function-
alities onto the execution resources (shared variables, call
sequences, real-time tasks, and communication media).

AADL [15] is an architecture description language (stan-
dardized by the SAE ') dedicated to the design and analysis of
distributed real-time and embedded systems. AADL relies on
a notion of component which falls in four different domains:
System, Abstract, Software and Hardware. The definition of
the system and abstract domains are very generic, so that
the associated semantic is imprecise (which is not really
surprising considering the purpose of using such components).
On the other hand, software and hardware components are
‘“concrete components” that come with a precise semantic.
Besides, AADL aims at representing precisely the allocation
of software components onto the execution platform. In the
remainder of this section, we present the different component
categories belonging to AADL software and hardware com-
ponents; we describe some of the possible SW/HW mappings
provided by the language; finally we illustrate the granularity
level AADL enables to reach.

a) Software components: AADL defines six component
categories among software components:

« Data components can represent data types, classes, ob-

jects and shared variables.

o Subprogram components represent sequentially exe-

cuted source text (with its parameters).

« Subprogram groups represent subprogram libraries.

ISociety of Automotive Engineers - http:/www.sae.org
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o Thread components represent schedulable unit that can
execute concurrently on the execution platform.

o Thread group components represent logically grouped
threads.

o Process components represent a virtual address spaces,
available to store the state of other software components.
b) Hardware components: AADL defines mainly six

component categories among hardware components:

o Processors components represent the set of hardware
and software platform elements that is responsible for
executing and scheduling threads and virtual processors.

« Virtual processors represent logical resources capable
of scheduling and executing threads or other virtual
processors.

« Memory components represent the hardware entities that
enable to store code and data binaries.

« Buses represent communication media dedicated to the
transfer of control and data between memories, proces-
sors, and devices.

« Devices represent hardware entities that interface with the
execution environment.

c) Software to hardware allocation: The allocation of
software components onto hardware components is mainly
modelled into system components, by the means of ”bindings”:
depending on its type, a software subcomponent contained in
a system component can be bound to one of the hardware
components of this system. For instance, a thread component
can be bound to a process components, a 